O'REILLY"

Securing
Microservice APls

Sustainable and Scalable Access Control

/"'f/fj ’ 1 P

Matt McLarty, Rob Wilson
& Scott Morrison

Building Your Secure Microservice
Architecture in Practice

This eBook is brought to you by CA Technologies - an analyst-acclaimed
leader in full lifecycle APl and microservices management.

Try these tools from CA to help build your microservices architecture for
speed, scale and safety:

L
I

<[>

1©

CA Live API Creator
Create microservices with enterprise-class APIls in minutes

CA Microgateway

Optimize network traffic and build a consistent and secure
service-mesh with SSL/TLS, OAuth and service discovery in each
Docker™ container.

CA AP| Gateway

Aggregate microservice APIs into valuable business APIs for
secure, scalable and developer-friendly external consumption

CA APl Management

Enable developers to discover and register to use your business
APIs with automated API docs and testing tools

CA APl Management - CA Application Performance Management

Analyze API usage and performance from app to container to
assess operations, business impact and to diagnose issues

Learn more and start a trial today at: ca
ca.com/microservices > o
technologies

http://www.ca.com/microservices

Securing Microservice APIs

Sustainable and Scalable
Access Control

Matt McLarty, Rob Wilson, and
Scott Morrison

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

Securing Microservice APIs
by Matt McLarty, Rob Wilson, and Scott Morrison

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Brian Foster Interior Designer: David Futato
Production Editor: Colleen Cole Cover Designer: Randy Comer
Copyeditor: Amanda Kersey lllustrator: Rebecca Demarest
February 2018: First Edition

Revision History for the First Edition
2018-01-29: First Release

The O’Reilly logo is a registered trademark of O’'Reilly Media, Inc. Securing Microser-
vice APIs, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub-
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

This work is part of a collaboration between O’Reilly and CA Technologies. See our
statement of editorial independence.

978-1-492-02711-9
[LSI]

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Preface........ooovviiiiiiiiiiiiii v
1. Microservice Architecture. ... 1
The Microservice API Landscape 2
APIT Access Control for Microservices 3
Microservice Architecture Qualities 4
2. Access Control for Microservices.ccvvviiiiiiiiinnn, 7
Establishing Trust 8
Network-Level Controls 9
Application-Level Controls 12
Infrastructure 18
Emerging Approaches 22
3. AGeneral Approach to Microservice APl Security. 25
Common Patterns in Microservice API Security Solutions 25
Domain Hierarchy Access Regulation for Microservice
Architecture (DHARMA) 26
DHARMA Design Methodology 28
A Platform-Independent DHARMA Implementation 29
Developer Experience in DHARMA 34
4. Conclusion: The Microservice API Security Frontier.............. 37

A. Helpful ReSOUICES. .. vvvveerieeeie e i eeieeenieennans 39

Preface

There are a number of techniques for controlling access to web APIs
in a microservice architecture, including network controls, crypto-
graphic methods, and platform-based capabilities. This paper pro-
poses an API access control model that can be implemented on any
one platform or across multiple platforms in order to provide cohe-
sive security over a network of microservices.

Who Should Read This Report

This report is intended for anyone involved in building and main-
taining a system of microservices, especially those responsible for
the security of the overall system. This encompasses many possible
roles: architects, product owners, development leaders, platform
teams, and operational managers.

What's in This Report

This report consists of four sections:

1. An overview of the microservices landscape, to set the context
for the security model

2. A survey of available security technologies and solutions that
apply to microservice APIs

3. A proposed model for securing microservice APIs

4. A conclusion that includes speculation on the future direction
of microservice API security

What's Not in This Report

This report is explicity focused on HTTP-based APIs for communi-
cation with and between microservices. Neither security approaches
for non-HTTP transport protocols nor security approaches for con-
tainers in general are included.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and key-
words.

Constant width bold
Shows commands or other text that should be typed literally by
the user.

Constant width italic
Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a general note.

This element indicates a warning or caution.

vi | Preface

0'Reilly Safari

Safari (formerly Safari Books Online) is a

1 membership-based training and reference
platform for enterprise, government, educa-
tors, and individuals.

Members have access to thousands of books, training videos, Learn-
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among oth-
ers.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

http://oreilly.com/safari
http://oreilly.com/safari
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

The authors would like to thank Alan Marion, Tarun Khandelwal,
Irakli Nadareishvili, Mike Sample, Sascha Preibisch, and Josh
Chiang for their invaluable contributions to the report. Thanks also

to Shiu Fun Poon, Kin Lane, Ronnie Mitra, and Daniel Bryant for
their helpful feedback.

viii | Preface

CHAPTER1
Microservice Architecture

The term “microservices” gained popularity following a blog post
from James Lewis and Martin Fowler published in early 2014 in
which they described a new style of software architecture consisting
of small, interconnected components assembled to form distributed
applications. Individual microservices within a microservice archi-
tecture generally display the following characteristics:

Service orientation
An individual microservice typically implements a single func-
tional responsibility and may be consumed by other software
components at any “layer” or “tier” of the system.

Independent deployability and manageability
An individual microservice should be able to be deployed, man-
aged, and scaled on its own without the need to coordinate with
other components in the system.

Ephemerality and elasticity
Individual microservice instances are frequently short-lived,
and multiple instances of a microservice are often run and then
shut down in order to meet the dynamic performance needs of
the system.

In addition to these characteristics, microservices often use the fol-
lowing standard technologies:

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Web API communication
Microservices often publish their business functions through
HTTP-based web APIs encoded using JSON or other related
media types.

Container-based deployments
Microservices often use Linux containers—frequently Docker
containers—as their unit of deployment, allowing for a smooth
transition from development to operations in a range of frame-
works and platforms.

Collectively, these microservice characteristics and common tech-
nologies must be factored into any solution for microservice API
access control.

The Microservice API Landscape

Some key concepts are needed in order to define a universal model
for microservice API security. We start with the service (aka micro-
service), a logical component that provides functionality to service
consumers through an interface. A service instance is implemented
through one or more runtime components, often a set of containers
in a microservice architecture. The service interface is often a web
API, a programmatic interface accessible via HTTP(s). A service’s
API is accessed through an API endpoint, a network-addressable
location within the runtime environment.' A service’s API may have
more than one endpoint.

An API request is a message sent to an API endpoint that triggers the
service’s execution, and an API response is a message sent in return
to communicate the result of the service’s execution. A component
that sends an API request takes the role of API consumer, while the
service that receives the API request and sends the API response
back to the consumer takes the role of API provider. A service may
play the role of both API consumer and API provider, depending on
the message context. Both roles may also be played by components
other than services. An API intermediary is a component that sits in
the API request path from API consumer to API provider. API gate-
ways and service proxies are common API intermediaries. An API
endpoint may be implemented on an API intermediary.

1 API endpoints are often listed in service registries like Consul, Eureka, or etcd.

2 | Chapter 1: Microservice Architecture

Figure 1-1 shows an example of these concepts working together in
a microservice architecture:

APl
intermediary

Service B
instance

Service A
instance

APl
intermediary

APl
endpoint
API
endpoint
APl
endpoint
APl
endpoint

User app
(API consumer)

Service C
instance

APl request #1 API request #2 APl request #3

Figure 1-1. Sample API requests in a microservice architecture

API Access Control for Microservices

Speed of delivery has typically been the motivating factor for organi-
zations moving to a microservice architecture, security being a sec-
ondary consideration. This book addresses access control for web
APIs within a microservice architecture. The “ITAAA” access control
framework—identification, —authentication, authorization, and
accountability (alternatively accounting, or auditing)—provides a
useful basis for describing web API access control in the context of
microservices.

Identification

Messages may be triggered by end user activity or automated events
and may be distributed and transformed through several interme-
diaries. Service consumers and intermediaries must be able to send
API request messages that include multiple identities along with
optional attributes that detail those identities, and they must be able
to accept API requests that include multiple identities and their
attributes.

Authentication

API requests may be authenticated through included credentials,
asserted claims (e.g., a token), trust relationships, or a combination
of these methods. Services must be able to either perform the
authentication themselves or delegate authentication to a trusted
component.

API Access Control for Microservices | 3

Authorization

Any application component—service or intermediary—that authen-
ticates an identity may make an authorization decision based on the
combination of the identity, its attributes, and the request context.
In a distributed microservice architecture, a single request may go
through multiple authorization decisions as it is passed from com-
ponent to component.

Accountability

It is important to audit system activity affected by API requests in
order to provide forensic details for intentional or unintended sys-
tem breaches. Accounting for an API message can happen at any
point in the request’s or response’s path. It is valuable to capture as
much of the message’s context as possible, given the potentially wide
range of identities, attributes, and processing components involved.

Microservice Architecture Qualities

In addition to the specific functional requirements for microservice
API access control, it is important to note the nonfunctional
requirements. Whereas the functional requirements describe what
the solution needs to do, the nonfunctional requirements define
how the solution should be implemented and operated. This is espe-
cially important in a microservice architecture, since there are a
number of qualities that will determine whether a solution will be
amenable to organizations adopting microservices.

Manageability/Operability

Microservice architectures typically feature a high degree of auto-
mation for all functions. In order for an access control solution to be
viable in a microservice architecture, it must expose machine acces-
sible interfaces for management automation.

Performance

Due to the distributed nature of microservice architectures, the pro-
cessing latency of each component has the potential to degrade the
performance of the overall system. As such, an access control solu-
tion within a microservice architecture should avoid adding latency
as much as possible.

4 | Chapter 1: Microservice Architecture

Usability

The rise in popularity of microservice architecture has been driven
by developers. Tools that have gained popularity in the microservi-
ces movement have usually featured strong usability, marked by
reduced friction in the developer experience. Therefore, it is impor-
tant for a microservice API access control solution not to impede a
developer’s tasks.

With the combination of the functional access control framework
and its optimal characteristics, we may now evaluate the variety of
current approaches to API access control in a microservice architec-
ture.

Microservice Architecture Qualities | 5

CHAPTER 2
Access Control for Microservices

APIs make application integration simple. A web browser or a curl
command is all you should need to try out an endpoint. No complex
libraries, no code-generated SDKs, not even a compile—just the
basic architecture and infrastructure of the web. This elimination of
barriers and friction, more than any other reason, is why developers
love APIs.

But you can take the web model too far, and this is especially true
for security. APIs bring some complex challenges in trust and iden-
tity that demand a more sophisticated approach than the conven-
tional web has to offer. Protocols like OAuth and OpenID Connect,
practices such as service throttling—these were all responses to the
unique challenge of API security.

Microservices add another layer of complexity with unique security
demands. Containers, ephemeral instances, runtime service discov-
ery, the focus on re-use across many apps—these factors conspire to
make microservices security hard. Until now, there have been few
guides describing how to secure modern microservices.

The goal of this chapter is to help architects and developers better
understand where they are investing their trust. This chapter does
not go into the details of how to setup each technology, as this is
beyond the scope of this book and better dealt with using the most
up-to-date materials for your implementation. Instead, it illustrates
why a technology exists so that you apply it correctly in your own
microservices architecture.

Establishing Trust

All security is based on trust. But trust has no effective measure,
only confidence that grows with careful diligence. Our trust in a dis-
tributed system is an accumulation of many decisions we make to
mitigate risk.

It is important to call out these decisions, because only then can we
begin to tease out the implicit trust that hides in our design. Too
many modern platforms make security opaque. This might make
them easy to use, but it masks assumptions and limitations. Good
security architecture is transparent about where it invests the trust.

Consider a simple, static website. On the surface, it should be easy to
secure. The pages are open for everyone to read, so there is no need
for authentication or user management. It only supports simple
HTTP GETs, so it would appear there is little opportunity for an
attacker to exploit.

But dig down, and we find the implicit trust. We trust our provider
to handle DDoS mitigation. We hope they have decent physical
security. We assume they harden their CMS platforms and keep up
on the latest attack vectors that might target the infrastructure below
our simple HTML pages.

At the other extreme, imagine a secure government computing
facility. Disconnected from the internet, its systems reside in Fara-
day cages inside a fortified building without windows. Even the
power supply is private. Yet despite this attention to detail, the secu-
rity is only as good as the vetting of the insiders using it.

The point is, trust is about compromise, and we need to be comfort-
able residing on a spectrum of risk. There are no absolutes in com-
puter security; there is only trust and acceptance of risk. Security
architecture is a tuning exercise, trying to optimize trust against
many competing interests.

The following sections cover the basic building blocks used to build
a secure access to microservices. These approaches all create trust
boundaries. Some architectures use these techniques in isolation,
but they may also be combined to meet the competing needs of
developers, operators, and security professionals.

8 | Chapter 2: Access Control for Microservices

Network-Level Controls

The simplest way to restrict access to an application is to control
access to the network. It is an attractive solution: by decoupling
from the application, we make the developer’s job much easier. But
this is a blunt instrument that is difficult to maintain at scale and
subject to catastrophic failure if compromised. Nevertheless, it has
its place in a secure microservices architecture.

Localhost Isolation

Localhost isolation is a common developer pattern. We've all built
and tested applications on our development machine, confident that
the firewall is protecting us from malicious network connections. It
is simple, and because of that it’s a useful model to illustrate the pros
and cons of any network segmentation scheme. It is also very rele-
vant today because of its widespread use in container deployments,
especially in common patterns like the sidecar.

Localhost isolation simplifies applications because they can trust all
senders. It allows us to associate services with specific ports, approx-
imating the traditional TCP and UDP security model binding well-
known ports to specific applications.

But this model does nothing to identify client applications (source
ports are ephemeral and assigned by the network stack) and
assumes that all processes on the OS are equally trustworthy. And it
tells us nothing about users associated with a client entity—for that
we need to move up the stack.

Network Segmentation

Network segmentation, using clever combinations of physical
switches, routers and firewalls, is one of the foundation elements of
computer security. By combining trusted entities into a private seg-
ment, developers can focus on application logic, not access control.
But this free ride comes at a cost, as any failure in the segmentation
scheme puts every entity at risk.

To mitigate this risk, network segments should be kept as small as
possible. Carving up the network into zones makes it easier to iso-
late breaches within the boundary. Crossing a boundary should
require a higher level of scrutiny, such as security token validation.

Network-Level Controls | 9

Zone membership should balance developer experience, operations
efficiency, and security exposure.

The virtual world (both classic virtualization and container-based
networking) uses a segmentation model that is largely the same as
the physical, substituting software-defined analogs for their hard-
ware counterparts. Models like ACLs—which are familiar to every-
one from their use in file systems—simplify network policy
definition with succinct access control rules.

The real problem with network segmentation comes with size. As
networks become more complex, the rules governing zone member-
ship become difficult to maintain. And as the number of zones and
hosts increase, so too does the attack surface.

SSL/TLS

One way to limit the opportunities for bad actors is to ensure that all
communications in a network segment use SSL/TLS. This provides
confidentiality and integrity protection of data in flight, server
authentication for clients, and adds important—though optional—
client-side authentication for servers.

So why don’t we use SSL/TLS everywhere? Part of the reason is iner-
tia. In the early days of the web, the cryptographic demands of SSL
were high, so most websites restricted its use to critical operations
like credit card transmissions. The impact of SSL/TLS is negligible
using modern CPUs, but there is an historical reluctance to use it
everywhere. This is a bad web practice we need to resist; all APIs
should use SSL/TLS everywhere.

10 | Chapter2: Access Control for Microservices

SPIFFE

Securing all traffic does come at a manageability
cost. Modern microservices networks are often
built to the 12-factor principles, which call for
ephemeral, stateless services. In a dynamic envi-
ronment, where hosts and containers are cycling
on a continuous basis, certificate and key man-
agement can be challenging. Traditional PKI
systems were not designed with this kind of
workload in mind.

The Secure Production Identity Framework For
Everyone (SPIFFE) attempts to simplify micro-
service authentication and secure network con-
figuration. SPIFFE provides a developer-friendly
means for dealing with X509 certificate-based
identities in a microservice network. SPIFFE
specifies “SVID’s” (SPIFFE Verifiable Identity
Documents), certificates used to uniquely iden-
tify running components in a microservice
infrastructure.

When to Use Network Segmentation

1. When you trust the physical security of the server and network
infrastructure

2. When you trust the infrastructure isolation mechanism and
process

3. When you trust every entity on the network segment

The Bottom Line for Microservices

Network segmentation can be used to create groupings of microser-
vices. Make groupings based on factors such as dependencies, natu-
ral trust between like-services, performance needs, domain
membership;' make them address the needs of developers, deploy-
ment, or operations. Use SSL/TLS in communications and evaluate

1 Based on the principles of Domain-driven Design as described in Eric Evans’ book with
this same name.

Network-Level Controls | 11

frameworks such as SPIFFE to simplify management. Use an inter-
mediary with application-level controls to restrict access into the
network segment.

Application-Level Controls

Application entities establish trust by an exchange of security
tokens. A trusted third-party issues tokens and uses cryptography
(either across the communications channel or within the token
itself) so that entities can establish trust with no prior relationship.
Token trust models are usually based on either shared secrets or the
more common practice of public-key cryptography.

The Problem with Traditional Web Tokens

Web sessions are something developers take for granted. Applica-
tion servers make persisting state so effortless, it’s easy to forget that
HTTP is a stateless protocol. There is a lot of good engineering here,
and it would be a mistake not to recognize the hard-won lessons
that underpin a modern web server/browser interaction. You can
certainly use cookie-based sessions in a centralized, microservices
network, as long as you have a fast session storage mechanism like
Redis to serve each instance.

But traditional web sessions have limitations. The Session Identifier
binds back to an act of authentication, and so it acts as a proxy for a
user’s primary authentication factors. This is why session hijacking
is such an effective attack. Once an attacker acquires a session ID,
they are able to do anything that valid credentials would permit.

Another issue is that web sessions don't cross security domain; how-
ever, SAML came about to address that limitation. SAML isn't a ses-
sioning mechanism, but a federation technology that allows security
domains to exchange information about acts of authentication, as
well as a user’s entitlements and attributes. It is a common technol-
ogy for enterprise single-sign on.

SAML did much to introduce developers to some important access
control patterns that are very relevant to microservices. It separated
out clients, protected resources and identity providers, and made a
clear distinction between Policy Decision Points (PDPs—where
tokens are evaluated against a security policy) and Policy Enforce-
ment Points (PEPs—where a decision is enacted). It acknowledged

12 | Chapter2: Access Control for Microservices

that PDPs could either be centralized or highly distributed (co-
located with a PEP protecting a service) to meet security and perfor-
mance requirements.

SAML also introduced a standardized secure, transparent token
holding claims about authentication, authorization, and attributes. It
described how to transmit these safely and articulated the tradeoffs
between local and centralized evaluation. Many of these ideas re-
appear—though in altered guise—in modern authorization technol-
ogies like OAuth, OpenID Connect, and JWT.

SAML, however, is not a good solution for APIs or microservices. It
is a complicated technology, relying too much on centralized, formal
trust administration and expensive, enterprise-oriented infrastruc-
ture. To a developer accustomed to JSON-centric APIs, it’s a night-
mare. The XML tokens are cumbersome and the endpoints are
SOAP.

But biggest problem with SAML is that it doesn't help users to dele-
gate authorization between applications. The modern web is built on
the idea that a user should be empowered to make connections
between the accounts they own in different security domains. This
represents a huge shift in power for identity management—away
from central administrators, and toward the users themselves.

Modern Tokens For APIs

The new generation of API-centric security token frameworks
address these limitations in the old web technologies. Tokens are
JSON-based, and protocols are simple to implement as API end-
points. But they also address a deeper concern about the implict
trust a user invests in applications.

The new token model maintains that we should never trust a client
or a server application with something as powerful as a password
(or any primary authentication factor). Browsers can be compro-
mised; native apps might have malicious code to misuse credentials.
Modern token schemes address this risk by decoupling applications
from authentication. They issue short-lived tokens with constrained
capabilities, designed to limit the security exposure from entities
that might not be trustworthy.

Application-Level Controls | 13

API keys

API keys are an opaque token intended to identify a client app. Many
applications may use an API, so it is useful for a product manager
responsible for the API to know where the traffic is coming from.
API keys are issued to the developer of a client app by an API’s
owner or product manager.

For example, a native gaming app on a mobile phone would have its
own API key. When the app calls an API endpoint, it includes this
key so the service can recognize it. An API key does not identify a
unique, deployed instance of an app. It will be compiled into the
binary image and so is identical across every installation. Applica-
tion key might have been a better name.

Herein lies the problem: because this is a simple, embedded creden-
tial, API keys can be located by a determined attacker. For this rea-
son, you should never consider an API key authoritative. It is useful
for rough usage tracking and traffic management, but always
remember it could be spoofed.

0Auth 2.0

OAuth 2.0 is the preferred framework for secure authorization in
modern application architectures. What begin as a simple way to
delegate authorization between websites is now the primary means
of API authorization. But it is easy to misinterpret OAuth as a sim-
ple authentication and session tracking mechanism—basically an
updated, REST-like version of what web developers have done for
years. Not only is this inaccurate, but it misses the real point of this
technology. The OAuth framework addresses trust issues between
users, applications, and infrastructure we have overlooked for years.

OAuth allows users to delegate access between distributed applica-
tions. It is not an authentication protocol, which proves a user’s
claim to an identity. It is an authorization protocol that lets a user
(the resource owner) grant an app (the client) access to an API (the
resource) on their behalf. This access is for a limited time and with
limited scope.

The important point OAuth makes is that we should never trust any
application with unrestricted authentication factors (such as a pass-
word). These are the keys to our kingdom, and we can never be cer-
tain the application will use these keys for our intended purpose.

14 | Chapter 2: Access Control for Microservices

Instead, we should only trust applications with tokens having limi-
ted capability and a short lifespan.

The reason OAuth flows appear so complex is that they solve a
much more difficult problem than simple cookie-based session
management. Different flows exist to accommodate clients with
wildly diverse capabilities and limitations, from JavaScript apps in a
browser (where there is no secure local storage) to native mobile
apps (more capable, but constrained to vendor app model), to desk-
top apps (where there are relatively few limitations).

Most of us think of OAuth as a network edge technology, interfacing
external internet clients with the service endpoints at an organiza-
tional boundary. But this is too limiting. Oauth is also an important
technology for managing access to microservice environments.

OAuth relies on a consent ceremony performed by resource owners.
This is not always practical in a microservices environment, with its
complex interdependencies and ever-changing landscape of service
instances.

Should I Use API Keys or OAuth Access Tokens?

It's important to remember that API keys iden-
tify an application, not a user. They are easy to

" reverse-engineer, so they should never be a
replacement for user authentication. Always use
OpenID Connect/OAuth to authenticate and
authorize users.

OpenlID Connect

OpenID Connect is an authentication layer built on top of the
OAuth framework. OAuth is concerned only with authorization,
making no attempts to define how authentication takes place.
OpenID Connect takes this on, providing flows to authenticate an
end user and provide claims back to a relying party.

Like OAuth, OpenID Connect makes the important point that the
apps we use may not be trustworthy. If you stop and think about
this, it makes perfect sense. Your phone is full of apps written by
third parties; how can you be confident that these won’t misuse your
credentials? The answer is, of course, you can't—so we need a
method to take apps out of the authentication business.

Application-Level Controls | 15

The complication is that apps—and not just the services they invoke
—need to be confident in the identity of a user. An app can’t derive
this from the operating system, as this user context is likely different
from that of the app.

OpenID Connect achieves both these goals by doing an end-run
around the app using a trusted channel to authenticate, such as lev-
eraging the native browser on a mobile device. The browser inter-
acts with an identity provider in isolation from the app. This
provider is free to perform authentication using any combination of
factors—OpenID Connect leaves this open. In return, the authoriza-
tion server issues the app an ID token, which asserts the subject’s
identity (the user) and the token’s intended audience. OpenID Con-
nect constrains ID tokens in scope and time, which limits the poten-
tial for misuse. The tokens also provide a convenient packaging for
common claims such as name and phone number.

This is a lot packed into a few simple endpoints—and that’s its
attraction. OpenID Connect solves a first order problem in estab-
lishing trust in a way that is simple, portable, and powerful.

Opaque tokens versus transparent tokens

One of the biggest challenges in building an authorization architec-
ture is finding the right balance between centralized and decentral-
ized control. This usually shows up in how our protected resources
handle tokens.

Many OAuth implementations make use of opaque access tokens,
sometimes called a by-reference token. Usually these are randomly
generated identifiers, infeasible for an attacker to guess, that index
state on a centralized server. The resource must validate this with
the issuer. This comes with all the advantages of centralized control.
It is easy to administer and increases responsiveness, as it is easy to
invalidate any active tokens held by a rogue client. But de-
referencing a token can be expensive, and centralization always cre-
ates a bottleneck that could limit scalability and reliability. It is
common for OAuth’s access tokens and refresh tokens to be opaque
and require validation from a centralized authorization server.

The alternative is to use a transparent token that can be interpreted
at a local decision point. This is called a by-value token. Architec-
tures with transparent tokens scale well by removing the central val-
idation bottleneck. Each resource can also apply locally managed

16 | Chapter 2: Access Control for Microservices

policy when interpreting a token; this can be valuable when crossing
organizational or geographical boundaries. OpenID Connects ID
Token is a transparent token.

JWT

JSON Web Token (JWT) is a simple, JSON-based packaging format
for exchanging claims. The claims can be anything you can repre-
sent in JSON; JWT adds only a formalized header and body, a sign-
ing mechanism (JWS), optional encryption (JWE), and a simple web
encoding. The ID Token from OpenID Connect is a JWT.

Claims are important because they let us refine our access control
decisions. If a token is completely opaque, a resource server has no
opportunity to apply local policy on a transaction. But with a trans-
parent token like JWT, a claim such as application=1osTradingApp
could provide valuable context to a microservice making access con-
trol (or general service-delivery) decisions.

Authoritative claims are the basis of access control models like
attribute-based access control (ABAC). ABAC shifts authorization
from individual identity-centric decisions (Bob is allowed access to
the printer) to attribute-centric rule sets (All systems on the third
floor can access the third-floor printer). This is a powerful technique
to apply to microservices, which have a need to restrict access but
also promote re-use by many different (and continuously changing)
sources.

Application-Level Controls | 17

JWT Sessions and JOSE Issues

Be careful if you use JWT—it is still an emerging
technology. We recommend using it for authori-
zation, but avoid using it to manage user ses-
sions.? Researchers have also identified
problems with the JavaScript Object Signing and
Encryption (JOSE) stack. Early implementations
let attackers forge tokens, and the lack of a ver-
sioning mechanism means that the specification
cannot evolve to exclude weak encryption algo-
rithms.? Efforts such as POST offer an alterna-
tive, though nonstandard, solution.*

When to Use Tokens

1. You need to authenticate and authorize users and applications.

2. Your trust needs to cross boundaries, which might be organiza-
tional, geographical, application, or virtual.

3. You can tolerate ceremony between applications and users.

4. You have the infrastructure to facilitate the token exchange.

The Bottom Line for Microservices

Always use OAuth 2.0 when authorizing an external client to edge-
of-network endpoints. Tokens can be opaque in this use case. For
internal hops, use OAuth with transparent JWT tokens to cross
boundaries between network zones. Use an intermediary capable of
applying local policy interpretation on tokens to enforce access con-
trol across the boundary.

Infrastructure

Both network-level controls and application-level controls have a
place in a well-thought-out security architecture. The approach we

2 “Stop using JWT for sessions”, last modified 13 Jun 2016.

3 “No Way, JOSE! Javascript Object Signing and Encryption is a Bad Standard That
Everyone Should Avoid”, last modified March 14, 2017.

4 “PAST: Platform-Agnostic Security Tokens”.

18 | Chapter2: Access Control for Microservices

http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions/
https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid
https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid
https://github.com/paragonie/past

advocate here is to leverage both approaches so that our trust model
is clear, with reasonable security that doesn’t hinder development,
deployment, and operations.

Achieving this balance can be a challenge, but we can rely on some
common infrastructure elements to help us out.

Proxy/Gateway

The distinction between proxies and gateways has blurred in recent
years. Both are reverse proxies that stand between an HTTP client
and server. The traditional proxy is a lightweight network entity
offering a few predictable functions, such as content filtering or load
distribution. Gateways do the same, but operate at a higher level,
enforcing sophisticated policies by interpreting application proto-
cols on a transaction-by-transaction basis. They are programmable
and usually responsible for authentication, authorization, threat
detection, and sophisticated traffic management.

Proxies are an important component of all microservices architec-
tures. An instance of a microservice may be ephemeral, so finding
all the available instances at any point in time—called runtime ser-
vice discovery—is necessary in any architecture. For a long time,
this was the domain of web proxies such as HAProxy and NGINX.
Specialized proxies for microservices are appearing, such as Envoy,
Linkerd, and Traefik. These allow for mutual TLS, and in some cases
simple token validation.

At the other end of the spectrum are API gateways. These excel at
enforcing security policies and accommodating unusual networking
challenges, but their binary images tend to be large, and the gate-
ways are complex to deploy. However, a new generation of light-
weight, microservice-centric gateways are appearing that can
underpin a 12-factor, microservices architecture. This is an ideal
solution, as programmable gateways help to insulate applications
from the rapid change in this space.

Network Overlays

A number of vendors have introduced network overlay solutions on
popular cloud or container-based networking platforms. These are
intended to simplify the configuration of secure microservices
networks.

Infrastructure | 19

OpenContrail and Romana offer network overlay solutions for
cloud infrastructures. Project Calico includes native support for
Kubernetes, Docker, and Mesos. Cilium introduces new technology
to the Linux kernel in order to modify networking capabilities.

Paa$

Popular microservices platforms offer a variety of access control
abstractions to reduce complexity for operators and developers. This
requires trust in the PaaS—which is a consideration you must never
take lightly. However, used in combination with elements like proxy/
gateways, Paa$ offers a very powerful microservices platform for lit-
tle invested effort.

This section explains the API access control mechanisms in avail-
able in Kubernetes, Cloud Foundry, and AWS.

Kubernetes

Kubernetes is a platform for run time container management. It is
widely used to manage the lifecycle of microservice instances. A
Kubernetes installation consists of one or more clusters made up of
nodes that run a collection of pods consisting of one or more con-
tainers. Pods can be further abstracted by defining services.

Kubernetes uses service accounts to identify components or groups
of components within the system. It uses basic authentication, X.509
certificates, as well as multiple token types to authenticate users and
service accounts using its control plane API. It offers a rich set of
authorization models as plugins, including RBAC, ABAC, and web-
hooks for integrating with other infrastructure.

Data plane communication between containers, pods, and external
applications in a Kubernetes cluster uses network controls. Contain-
ers can only talk to containers on the same node, but “service”
abstraction allows containers or pods to talk across nodes using pri-
vate IP addresses. Network policies can act as an ACL for container-
to-container, pod-to-pod, and external-entity-to-service
communication.

Despite these capabilities, responsibility for access control of web
APIs exposed by microservices running in a Kubernetes cluster is
generally left to the microservice itself, or to a delegated intermedi-
ary such as an API gateway.

20 | Chapter 2: Access Control for Microservices

Cloud Foundry

Cloud Foundry is an open source platform-as-a-service (PaaS)
intended to abstract away infrastructure concerns and provide a pol-
yglot application environment for developers. Cloud Foundry
directs all inbound messages to application components through the
router component (called the Gorouter), although it is possible to
configure container-to-container networking that bypasses this
default component.

Cloud Foundry has a centralized identity server, UAA (User
Account and Authentication), that acts as an OAuth2 authorization
server. UAA issues signed JSON Web Tokens for accessing compo-
nents running on the platform. Cloud Foundry includes two types
of application level ACLUs: Application Security Groups to restrict net-
work addresses containers can route to, and Container-to-Container
Network Policies to restrict inbound requests.

In Cloud Foundry-based microservice deployments, web API access
is most often controlled through a combination of UAA-issued
access tokens and network restrictions. But you can add a third-
party API gateway to add more specific web API access control poli-
cies.

Amazon Web Services (AWS)

Amazon Web Services is the most popular infrastructure-as-a-
service (IaaS) platform in the world. AWS consists of an ever-
increasing number of core services, including EC2 for compute
resources, S3 for storage, and RDS for relational databases. Amazon
introduced its EC2 Container Service (ECS) to support Docker-
based applications.

AWS includes a built-in identity and access management service,
AWS TAM, for administering user authentication and authorization.
AWS TAM does not use OAuth 2.0, JWT, or OpenID Connect.
Instead, it employs proprietary mechanisms for communicating
identities and permissions. AWS has a built-in certificate manage-
ment service, AWS Certificate Manager, mostly used to support SSL/
TLS.

It is common for organizations deploying microservices on AWS to
use their own self-deployed tools to control access to web APIs.
AWS has an API gateway; however, this service is not designed for
microservice security topologies such as we describe here.

Infrastructure | 21

Emerging Approaches

Technology never stands still. We follow fads and re-package old
ideas. Sometimes we even come up with things that are genuinely
new. It keeps the industry fresh and exciting, but it makes predicting
the future very difficult. Time and again, we see good ideas and
great implementations lose out to weaker alternatives simply for lack
of mindshare.

That said, there are some forces acting on the microservices space
that are more predictable. As microservices architectures increase in
complexity, so too will the need to abstract both infrastructure ele-
ments and the command-and-control system that coordinates all
the underlying pieces. This is our experience with PaaS, which
assembles all the components we need to orchestrate service lifecy-
cle into a common platform.

Security will follow this same model. Access control will be sub-
sumed into the platform itself, expressed using high-level policies
decoupled from the runtime state. As long as the platforms are
transparent about how they map policy to implementation, this is a
good thing. It allows us to focus on the big picture of trust, threats
and mitigation, which is where our attention should be.

One example of a policy-focused approach is the Open Policy Agent
(OPA) allows users to define policies and enforce them locally using
a sidecar container or an embedded library. The design of OPA sup-
ports a broad range of policies, and there are examples specific to
HTTP API access control.

Service Mesh

Service mesh in an emerging technology that helps to manage inter-
connections between services. Most consist of a command-and-
control backplane in control of lightweight proxies, acting as
intermediaries that actively manage the communication between
services. The goal is to decouple security and management from
individual services and express this through generalized policies
applied to the platform as a whole.

Istio is a service mesh platform for microservices. It focuses on traf-
fic management, security policy enforcement, and telemetry. Istio is
an open-source effort led by Google, IBM, and Lyft.

22 | Chapter 2: Access Control for Microservices

Istio uses the Envoy service proxy to provide connectivity between
services. Istio-Auth uses SVIDs from SPIFFE to identify and
authenticate services and a service mesh using mutually authentica-
ted TLS. Currently, Istio-Auth relies on platform-specific capabilities
in Kubernetes, which may make it challenging to support other plat-
forms.

Serverless Computing

Serverless computing extends the idea of abstraction even further.
The big idea here is that a developer’s time is best spent solving busi-
ness problems, not fighting with infrastructure. Serverless gives the
developer a simple code-container insulated from the details of
deployment and lifecycle.

Events on the platform trigger activation of a service. An HTTP call
to a resource might be an event, but it is important to think beyond
such obvious connections. A counter reaching a particular threshold
might be an event, or a field changing in a database. It is a liberating
idea for a developer, who can now focus on data and workflows,
leaving availability, scaling, security, and metering to the platform.

The AWS Lambda services is the most prominent example of server-
less computing, though alternatives are appearing. Developers can
write Lambda functions in various languages, such as Java and C#,
and associate their functions with a rich set of triggers. These trig-
gers can fire in response to events across a broad range of AWS
resources, from changes in a DynamoDB table to scheduled events
in Cloudwatch. AWS Lambda is beginning to see widespread adop-
tion by organizations developing microservices.

Emerging Approaches | 23

CHAPTER 3

A General Approach to
Microservice APl Security

The variety of current approaches to API access control in a micro-
services context underlines the complexity involved. Although the
solutions outlined in Chapter 2 are useful, there is not yet a cross-
platform approach that covers all of the requirements from Chap-
ter 1. This chapter proposes a generalized approach to microservice
API access control—Domain Hierarchy Access Regulation for
Microservice Architecture (DHARMA)—that incorporates and
accounts for the variety of solutions.

Common Patterns in Microservice APl Security
Solutions

In theory, a singular approach could be taken to protecting every
API endpoint in a microservice architecture, with maximum secu-
rity using a “zero trust” mentality. However, in practice, we have
already seen how networks, cryptography, credentials, tokens, and
platforms are all being used to provide varying degrees of access
control. Why is this?

As discussed earlier, microservice architecture is employed to help
organizations optimize their software delivery speed and system sta-
bility while scaling up. Distributed or decentralized organizations
have recognized that a one size does not fit all when it comes to
administering API security policies and enforcing those policies effi-

25

ciently at runtime. This continuous need for optimization has led to
the diversity of microservice API security solutions. Yet there are
still common patterns in the heterogeneity.

Each of the solutions in Chapter 2 considers whether or not the API
request or its source are trusted as a basis for its logic. For example,
network isolation assumes all traffic is trusted, certificate-based
access control verifies the trust chain, and platform-based solutions
rely on proof of platform residency in order to authorize API
requests. Trust verification is typically more efficient at runtime than
authenticating untrusted message sources. As a result, we can use
this trusted/untrusted API request duality to optimize a general
microservice API security solution.

Domain Hierarchy Access Regulation for
Microservice Architecture (DHARMA)

In a distributed software system, there are multiple entities with a
variety of trust associations. In order to define a model for API secu-
rity in a microservice architecture, we consider the trust relationship
between individual services. Since an individual service may have
different levels of trust with various groups of other services, the
proposed approach must be applicable at all levels of system magni-
fication.

To articulate the proposed approach to microservice API security,
we first introduce its foundational concepts. A trust domain (or sim-
ply domain) is a set of services that communicate with each other in
a privileged way. The domain relation is the reason for the domain’s
services to be grouped together. The trust mechanism is the method
used by services within the domain to verify that an API request is
coming from a trusted source. In a simple example, there could be a
domain of services X and Y deployed to a specific ECS instance (the
domain relation) that communicate over mutually authenticated
TLS connections (the trust mechanism). Let’s call that domain D1.

It is possible that services inside a domain may receive API requests
from services or other entities outside. In this case, there needs to be
a defined access mechanism for the domain that allows these external
API requests to be authenticated and authorized. Extending the sim-
ple example, service X may accept API requests from outside entities

26 | Chapter3: A General Approach to Microservice API Security

that include a valid OAuth Access Token (the access mechanism for
D1).

As discussed in Chapter 1, a single service may have multiple APIs,
and a service’s APIs may have multiple endpoints. In the proposed
model for microservice API security, an interior endpoint is an API
endpoint that is accessible to other services within the domain.
Access to an interior endpoint is authorized through the domain’s
trust mechanism. A boundary endpoint is an API endpoint that is
accessible to services outside the domain, authorized through the
domain’s access mechanism. Following our simple example, service
X offers both a boundary endpoint and an interior endpoint, while
service Y only offers an interior endpoint.

Interior
endpoints.. - ———___
- -~ - -
. = ~
Domain D1 N
External g £ A
xternal =S =3) \
i =5 S 2| ServieY)
entity = =)
@ %) y)
4
7
.
.
~ - <
Boundary Scae L - -~

endpoint

Figure 3-1. Domain example with boundary and interior endpoints

Now consider a separate trust domain—D2—made up of services A,
B, and C but that also includes service X. The trust mechanism for
D2 could be the use of a valid OAuth Access Token, which is the
same as the access mechanism for D1. Therefore, the API endpoint
for service X that is a boundary endpoint in D1 can also be consid-
ered an interior endpoint in D2. In our model, this creates a domain
hierarchy, since it creates a hierarchical trust relationship between
the inner domain D1 and the outer domain D2.

Wthin a domain hierarchy, there are implicit rules about inter-
service communication based on published API endpoints. In the
Figure 3-2, a service in D2 that is not also in D1 can only send API
requests to services in D1 that expose a D1 boundary endpoint.
Conversely, a service in D1 can send API requests to services in D2
(that are not in D1), but only if the D1 service is able to comply with
D2’s trust mechanism.

Domain Hierarchy Access Regulation for Microservice Architecture (DHARMA) | 27

T -
- - - = ~ ~
- ~
e Outer semmm T T T e =l DN
rd . - S
,° domain D2 ’,—’ Inner Sso N
. N \

/ domain D1 AN
‘, -— I G -— \\ \\
| ~E[l=% .- V
1 s S| ServiceX % S| ServiceY 1
\ = = = i
\ ‘“ @ @ 7

\ ” /

\ /

AN 7 L’
* N ~ N~ - - g . P4 ‘s
Seo Boundary endpointforD1/ —~~ ==~~~ -7
~~<__ Interior endpoint for D2 _--

Figure 3-2. Domain hierarchy

Collectively, we call the model described in this section Domain
Hierarchy Access Regulation for Microservice Architecture, or
DHARMA for short.

DHARMA Design Methodology

DHARMA provides a useful means of analyzing trust in complex
systems of microservices. It can also be used to design the access
control approach for such systems. Designers can use the following
DHARMA methodology to set up access control for their microser-
vice architectures:

An API Access Control Design Methodology Using
DHARMA

1. Identify trust domains. For the system under consideration,
figure out what domains are signficant for access control pur-
poses. It may help to consider what domain relations are
important. For example, you may want to group services that
run on the same platform, within a specific network segment,
or that have a particular business affinity. Also consider the
domain hierarchy: how might the collection of services within
a domain be further subdivided into inner domains?

2. Define trust and access mechanisms. For each domain, define
what trust mechanism will be used to secure API communica-
tion between its services. This could be network isolation,
certificate-based trust schemes, or platform-specific capabili-

28 | Chapter 3: A General Approach to Microservice APl Security

ties. Also, define what access mechanism will be used to permit
external API requests. This could be credential-based, token-
based, or some other authentication scheme.

3. Determine interior and boundary endpoints. For each
domain, determine the APIs for its services and enumerate the
interior and boundary API endpoints. If possible, it is useful at
this point to identify known communication paths between
services and across domain boundaries.

4. Select domain implementation platforms. For each domain,
select which platform or platforms and which components will
be used for implementing the API endpoints. API intermedia-
ries are often used to implement boundary endpoints that
extend interior endpoints.

With this practical approach in mind, we can now explore a specific
application of DHARMA that is implementable in any platform set-
ting.

A Platform-Independent DHARMA
Implementation

The purpose of this book as stated at the outset is to define a cross-
platform approach to API access control in a microservice architec-
ture. DHARMA achieves that purpose on a universal level. However,
to make the book more tangible, this section defines a specific
instantiation of DHARMA that an organization can implement in
any platform context.

Domain Hierarchy

The domain hierarchy for this instantiation of DHARMA consists of
three tiers:

1. Inner domains that are groupings of the organization’s most
granular services

2. An outer domain made up of the organization’s coarse-grained
services that are most likely to be re-used across the organiza-
tion, and by external entities

A Platform-Independent DHARMA Implementation | 29

3. A region outside the organization’s control that may include
external entities who will make API requests to the organiza-
tion’s externally published services

Trust and Access Mechanisms

Following the DHARMA design methodology, it now makes sense
to define the trust and access mechanisms for the identified
domains. In doing this, it is clear that three authentication mecha-
nisms are needed: the trust mechanism for the inner domains, the
access mechanism for the inner domains which will also be the trust
mechanism for the outer domain, and the access mechanism for the
outer domain. We will determine these in reverse order.

Since the external entities making API requests across the outer
domain boundary are outside the implementing organization’s con-
trol, the outer domain access mechanism must be flexible and strict.
Following the lead of the open web, OAuth 2.0 makes sense here,
especially in conjunction with an opaque access token format that
cannot be derived by external attackers.

For the outer domain trust mechanism (also the inner domains’
access mechanism), we can rely on a degree of organizational con-
trol. Digital certificate-based trust is a proven, scalable option for
establishing trust. In fact, JSON Web Tokens signed using an
organization-issued certificate can be used to preserve end-user
identity as well as to assert the identity of the service making the
API request.

Lastly, the inner-domain trust mechanism will have the strongest
optimization bias toward runtime performance as opposed to strict-
ness of authentication. Network isolation in the form of VPC or host
collocation is feasible at this level. Nonetheless, JWT’s may still be
passed on API requests in order to maintain system accountability
and observability.

Implementation Considerations

There are a number of considerations for any organization imple-
menting this platform-independent approach to DHARMA. The
access and trust mechanism choices necessitate some foundational
practices and infrastructure in order to make this approach work in
a performant, scalable, and secure way.

30 | Chapter3:A General Approach to Microservice API Security

Certificate management

Since the outer domain trust mechanism relies on digital certifi-
cates, the implementing organization must have a certificate author-
ity capable of issuing digital certificates to trusted service clients,
service intermediaries, platform components, as well as the services
themselves. Certificate revocation is a useful capability, but not
essential. Certificate granularity is a key consideration. It is conceiv-
able that a certificate could be issued to each service and each ser-
vice intermediary, but not required. There should be at least one
certficate issued to each inner domain.

Token management

Tokens are a fundamental component of the platform-independent
DHARMA instantiation at all levels. Therefore, comprehensive
token management—the ability to validate, issue, exchange, and def-
erence tokens—is essential to the implementation. Theoretically, an
organization could use one token management server for their
entire service domain, but it is recommended that some secure
token services be distributed to minimize the number of hops and
thus the transactional latency associated with API requests. These
distributed token servers may then be federated through certificate-
based trust.

In our platform-independent DHARMA implementation, OAuth
2.0 is used as the access mechanism for the outer domain. This
means that the organization must implement an OAuth-compliant
authorization server. The OAuth grant type will depend on the type
of external client requesting API access. For the Authorization Code
and Resource Owner Password grant types, end user authentication
is required in order for the external client to obtain an access token.
Therefore, the authorization server associated with each external
API must be able to validate end user credentials, either on its own
or by accessing the appropriate identity and access management
(IAM) services that act as the authority for such credentials.

Although there are no strict rules about the tokens used within this
DHARMA implementation, here are some guidelines. It is expected
that the JWTs used inside the domains will have a short expiry time
(less than an hour). Depending on scale and sensitivity, they may be
issued for single use. It is also expected that OAuth scopes and JWT
claims will be used to carry information useful to authorization
decisions. It will be at the discretion of how these properties are

A Platform-Independent DHARMA Implementation | 31

used, but it is likely that OAuth scopes will be mapped to JWT
claims in the case of token exchange. Lastly, the proposed approach
does not explicitly promote the use of OpenID Connect, but it is
expected that this platform-independent model could be applied
using OIDC tokens.

Component provisioning

Service intermediaries and service instances must be provisioned
securely. This means that deployment activities must be performed
by authenticated administrators or user agents with appropriate
authorization and that all administrative activity be audited. Of par-
ticular importance, certificates must be provisioned to components
within the service domain in a way that minimizes exposure and
violation of trust.

Service and endpoint deployment

The access mechanism for the inner domains’ boundary endpoints
does not require interaction with the authorization server, but API
requests do need a way of reaching the inner domain’s private net-
work. For example, in this platform-independent DHARMA imple-
mentation, inner domain services must be deployed on an isolated
network. Aside from that example, we will focus on the implementa-
tion location of the API endpoints.

In order to enforce the OAuth 2.0 access mechanism, the outer
domain boundary endpoints must be implemented on an OAuth-
capable component. For consistency, an API intermediary makes
sense here. Specifically, an API gateway can be used to publish the
boundary endpoints, connect with the authorization server for
token validation and exchange, and forward API requests to the
outer domain’s interior endpoints for execution.

The access mechanism for the inner domains’ boundary endpoints
does not require interaction with the authorization server, but API
requests do need a way of reaching the inner domain’s private net-
work. It makes sense to deploy these boundary endpoints to an API
intermediary capable of traversing that network segment and deal-
ing with the token authentication necessitated by the inner domain’s
access mechanism (JWT validation). In this case, the intermediary
could either be a local API gateway for the inner domain or a lighter
weight service proxy, a component now commonly understood in

32 | Chapter3: A General Approach to Microservice API Security

the context of a service mesh. A sidecar service proxy could perform
a similar role for service instances local to the outer domain.

Microservice APl accountability

Given the distributed nature of microservice architecture, it is
expected that a single user request may trigger multiple audit
records. In this platform-independent implementation of
DHARMA, all token activities (issuance, exchange, and propaga-
tion) must be audited, along with all authorization decisions. API
intermediaries (API gateway or service proxy) are expected to log
these activities, another reason for their inclusion in the solution.

Summary of the Platform-Independent DHARMA
Implementation
The steps involved in handling API requests within the platform-

independent DHARMA implementation outlined are summarized
in the following table:

Interaction Identification Authentication Authorization

External client External client obtains access Receiving APl Authorization server

request token from authorization gateway sends access validates access token,
server, sends on APl request to token to exchanges for JWT,
outer domain boundary authorization server which is sent back to
endpoint for validation APl gateway, which

forwards request to
service's interior

endpoint

Outer domain Service consumer either sends Receiving service Service checks JWT
service-to- previously obtained JWT or proxy validates token claims and processes
service request obtains new JWT from signature and accordingly
OR outer- authorization server and sends certificate chain
domain-to- on APl request to outer
inner-domain ~ domain interior endpoint/
request inner domain boundary

endpoint
Inner domain Service consumer either sends Trusted based on Service checks JWT
service-to- previously obtained JWT or network isolation claims and processes
service request obtains new JWT from local accordingly

secure token service and sends
on APl request

Figure 3-3 illustrates the platform-independent implementation of
DHARMA showing sample API request flows.

A Platform-Independent DHARMA Implementation | 33

External entity
(e.g., user app)

A 4

LBoundary endpoint(s) JI

Outer domai
uter domain APl gat o Authorization Certificate
CRISEY server authority

ierarchical endpoint }- Interior endpoint

Service proxy

|

H

Inner domain
Service

[Interior endpoint H Interior endpoint

Service Service

1. APl request with valid OAuth 2.0 access token

2. APl request with signed JWT (domain CA-issued certificate)
3. APl request with JWT for accounting, not authorization
4.Token dereferencing/validation/exchange

Figure 3-3. A three-tired, platform-independent DHARMA implemen-
tation

Developer Experience in DHARMA

The rapid adoption of the microservice architectural style has been
driven by developers, especially those developers who felt bogged
down by the code coordination and deployment activities typical in
a monolithic application architecture. In moving to microservices,
security functionality has the potential to be perceived as a similar
impediment to releasing software, even though these developers
know its importance.

DHARMA provides a comprehensive method for developers to
address API access control in their microservice architectures. How-
ever, in order to address the requirements outlined in Chapter 1
completely, it is important to examine the model explicitly from the
developer’s perspective. Specifically, the DHARMA developer expe-
rience should be considered when the developer is introducing a
new microservice that requires API security, building an application
that consumes a secured API, or dealing with a change to the gen-
eral access control policy of their organization. It is assumed that the
responsibility for identity and access management infrastructure, as

34 | Chapter3:A General Approach to Microservice APl Security

well as other application infrastructure (e.g., platforms and lifecycle
tooling) lie with centralized teams and that the development of indi-
vidual microservices is carried out by cross-functional development
teams.

Enabling Access Control for a Service/API

One of the stated benefits of a microservice architecture is that
developers are free to choose the language, framework, and platform
to use for developing and running their services, and DHARMA
facilitates this. The platform-independent DHARMA implementa-
tion delegates certificate management, token management, and
authentication policy enforcement to intermediaries. Therefore,
there are primarily three things developers must consider related to
API access control when designing, developing, and deploying their
service. First, they must know into which domain the service will be
deployed. Secondly, they must consider how JWT claims will be
used in authorizing inbound API requests. Lastly, they must deter-
mine how API request access is audited within the service. In addi-
tion to these three critical areas, developers should also determine
whether the JWT information will be used for further downstream
processing.

Publishing and Discovering APl Access Control Policies

For developers consuming microservice APIs, providing the right
information to permit access should be as seamless as possible. This
means that an APT’s access control policies should be clearly articu-
lated and easily accessible to these consuming developers. OpenAPI
—the most widely adopted API description format—includes an
access control vocabulary to promotes such documentation. The
method used to abide by the access control policy will vary, depend-
ing on what type of service consumer is being used, but the service
providing organization may want to offer helper libraries or other
tools to make the consuming developer’s experience as frictionless
as it can be.

Access Control Policy Change Management

One of the essential complexities of any software system is how to
deal with change to universal capabilities, such as organization-wide
security policies. For API access in a microservice architecture, there

Developer Experience in DHARMA | 35

is a risk that changing the access control policy would impact all
stakeholders in the service domain, including microservice develop-
ers. To address this, the platform-indepenent DHARMA implemen-
tation isolates much of the policy enforcement, and—by association
—policy logic into service intermediaries controlled by centralized
teams. This contrasts with offering common functionality in shared
libraries, an approach has a much larger impact on service develop-
ers when policies change. Ben Christensen elaborated on the dan-
gers of shared libraries in his talk “Don’t Build a Distributed
Monolith”.

This chapter introduced Domain Hierarchy Access Regulation for
Microservice Architecture (DHARMA), a universal approach to
defining API access control in a system of microservices. We then
introduced a design methodology for applying DHARMA, as well as
detailing a platform-independent implementation of DHARMA.
Lastly, we examined DHARMA from a developer experience per-
spective. The next chapter examines more areas where DHARMA
can be applied.

36 | Chapter3:A General Approach to Microservice APl Security

https://www.microservices.com/talks/dont-build-a-distributed-monolith/
https://www.microservices.com/talks/dont-build-a-distributed-monolith/

CHAPTER 4

Conclusion: The Microservice API
Security Frontier

The first three chapters of this book serve a practical purpose: to
outline the microservice API security landscape and its require-
ments, to review the current solution options available in the indus-
try, and most importantly to define a platform independent
approach to securing web APIs in a microservice architecture. How-
ever, as a secondary purpose, we hope that the concepts and
approaches introduced here can help to cover existing gaps and
explore new areas of microservice architecture and API security.

Standardizing the Language of Microservices

This book proposes a conceptual vocabulary for API security in a
microservice architecture, through “The Microservice API Land-
scape” on page 2 and the definition of DHARMA's foundational con-
cepts in Figure 3-2. Given the growth in scope and popularity of the
microservices approach, we hope this vocabulary can be used
beyond the API security scope and help software architects develop
consistent language when working with complex systems of micro-
services.

Applying DHARMA

Chapter 3 includes a detailed description of how DHARMA can be
implemented using platform-independent access and trust mecha-
nisms. Still, it is quite possible to implement DHARMA using

37

platform-specific mechanisms such as those listed in Chapter 2. It is
expected that the service registries such as Consul and etcd that are
used for service discovery and dynamic configuration could play a
role in the security landscape as well. We hope that DHARMA can
be used to articulate and clarify existing microservice API security
approaches, and that it can be used to discover and develop new
ones.

Extending DHARMA

There is much more ground to cover in controlling data plane
access for microservices beyond web APIs. With the increasing pop-
ularity of reactive, event-based architecture in microservice imple-
mentations, new protocols are emerging for communication,
particularly between microservices. gRPC—originally developed by
Google but now under the stewardship of the Cloud Native Com-
puting Foundation—offers native HTTP2 support and a binary seri-
alization format (protocol buffers, or protobuf) that is more
compact than JSON. Apache Thrift is similar to protobuf in opti-
mizing for message size. Multiple asynchronous messaging proto-
cols—RabbitMQ, Apache Kafka, NATS—are being used in event
distribution and streaming. Still, none of these protocols are any-
where near the maturity of web APIs when it comes to interoperable
access control mechanisms. With its abstract beginnings, DHARMA
has the potential to be used as a generalized data plane access con-
trol approach that includes all protocols.

In the meantime, this book should help organizations that are
implementing microservices—especially those using multiple plat-
forms for deployment and hosting—define a secure and scalable
approach for controlling access to the microservices’ APIs.

38 | Chapter4:Conclusion: The Microservice API Security Frontier

APPENDIX A

Helpful Resources

For more information on the concepts and technologies introduced
in this report, please visit the following links.

API and Microservices Practices

12-factor application principles

“API Design for Microservices” lesson

Ben Christensen’s talk “Don’t Build a Distributed Monolith”
Domain Driven Design (DDD) community

Developer Experience (DX) for APIs

James Lewis and Martin Fowler, “Microservices”

Irakli Nadareishvili, Ronnie Mitra, Mike Amundsen, and Matt
McLarty, Microservice Architecture (O’Reilly)

Sam Newman, Building Microservices (O’Reilly)

Emerging Microservice Technologies

Apache Kafka

AWS Lambda

CA Microgateway (service proxy)
Cilium network security

Cloud Foundry concepts

39

https://12factor.net/
http://www.apiacademy.co/resources/api-design-304-api-design-for-microservices/
https://www.microservices.com/talks/dont-build-a-distributed-monolith/
http://dddcommunity.org/
https://nordicapis.com/why-api-developer-experience-matters-more-than-ever/
https://martinfowler.com/articles/microservices.html
http://shop.oreilly.com/product/0636920050308.do
http://shop.oreilly.com/product/0636920033158.do
https://kafka.apache.org/
https://aws.amazon.com/lambda/
https://www.ca.com/us/products/ca-microgateway.html
https://www.cilium.io/
https://docs.cloudfoundry.org/concepts/overview.html

« Consul service discovery

« Envoy service proxy

« gRPC

o Istio policy management
 Kubernetes concepts

o Linkerd service proxy

o OpenContrail network virtualization
 Open Policy Agent

« Project Calico network security

« Romana network virtualization

« Secure Production Identity Framework for Everyone (SPIFFE)
o SPIFFE Verifiable Identity Documents

40 | Appendix A: Helpful Resources

https://www.consul.io/
https://www.envoyproxy.io/
https://grpc.io/
https://istio.io/
https://kubernetes.io/docs/concepts/
https://linkerd.io/
http://www.opencontrail.org/
http://www.openpolicyagent.org/
https://www.projectcalico.org/
http://romana.io/
https://spiffe.io/
https://spiffe.io/docs/svid/

About the Authors

Matt McLarty is vice president of the API Academy at CA Technol-
ogies. The API Academy helps companies thrive in the digital econ-
omy by providing expert guidance on strategy, architecture, and
design for APIs. He is an experienced instructor, speaker, and one of
the authors of the acclaimed book, Microservice Architecture
(O'Reilly).

Rob Wilson has been working in the field of information technol-
ogy for over 20 years. He enjoys working on complex and diverse
issues where the analysis of situations requires an in-depth evalua-
tion of numerous factors, as well as ingenuity and originality to
solve. Today much of his time is spent working with clients on their
API and microservices strategies. Rob holds a bachelor’s degree in
technology management from Memorial University, and master’s in
information technology from the University of Liverpool. When not
working with clients Rob enjoys outdoor activities with family, gam-
ing, and having lively and engaging conversations.

Scott Morrison is a senior vice president and Distinguished Engi-
neer at CA Technologies. He joined CA as part of its acquisition of
Layer 7 Technologies, where he served as CTO. Scott is a passionate,
entertaining, and highly sought-after keynote speaker. His quotes
appear regularly across media, including the New York Times, the
Wall Street Journal and CNN. He has co-authored academic papers
in medical, physics, and engineering journals, and holds 8 US pat-
ents. Scott lives with his family in Vancouver, BC.

	Cover
	CA Technologies
	Copyright
	Table of Contents
	Preface
	Who Should Read This Report
	What’s in This Report
	What’s Not in This Report
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Microservice Architecture
	The Microservice API Landscape
	API Access Control for Microservices
	Identification
	Authentication
	Authorization
	Accountability

	Microservice Architecture Qualities
	Manageability/Operability
	Performance
	Usability

	Chapter 2. Access Control for Microservices
	Establishing Trust
	Network-Level Controls
	Localhost Isolation
	Network Segmentation
	The Bottom Line for Microservices

	Application-Level Controls
	The Problem with Traditional Web Tokens
	Modern Tokens For APIs
	The Bottom Line for Microservices

	Infrastructure
	Proxy/Gateway
	Network Overlays
	PaaS

	Emerging Approaches
	Service Mesh
	Serverless Computing

	Chapter 3. A General Approach to Microservice API Security
	Common Patterns in Microservice API Security Solutions
	Domain Hierarchy Access Regulation for Microservice Architecture (DHARMA)
	DHARMA Design Methodology
	A Platform-Independent DHARMA Implementation
	Domain Hierarchy
	Trust and Access Mechanisms
	Implementation Considerations
	Summary of the Platform-Independent DHARMA Implementation

	Developer Experience in DHARMA
	Enabling Access Control for a Service/API
	Publishing and Discovering API Access Control Policies
	Access Control Policy Change Management

	Chapter 4. Conclusion: The Microservice API Security Frontier
	Appendix A. Helpful Resources
	About the Authors

